

96-well Serum/Plasma Fatty Acid Kit Non-Esterified Fatty Acids Detection 500 Point Kit

Cat# SFA-5

INSTRUCTION MANUAL	ZBM0030.03	
STORAGE CONDITIONS		

Reagents & Buffers: 4°C

All Zen-Bio Inc products are for research use only. Not approved for human or veterinary use or for use in diagnostic or clinical procedures.

LIMITED PRODUCT WARRANTY

This warranty limits our liability to replacement of this product. No other warranties of any kind, expressed or implied, including without limitation, implied warranties of merchantability or fitness for a particular purpose, are provided by Zen-Bio, Inc. Zen-Bio, Inc. shall have no liability for any direct, indirect, consequential, or incidental damages arising out of the use, the results of use, or the inability to use this product.

ORDERING INFORMATION AND TECHNICAL SERVICES

- · Zen-Bio, Inc.
- 3200 East NC-54 Suite 100
- PO Box 13888
- Research Triangle Park, NC 27709

Telephone (919) 547-0692
 Facsimile (FAX) (919) 547-0693

Toll Free 1-866-ADIPOSE (866)-234-7673
 Electronic mail (e-mail) information@zen-bio.com

World Wide Web
 http://www.zenbio.com

Rev 06.10.2016 Page 1 of 7

INTRODUCTION

This kit is designed to accurately determine the amount of free fatty acid present in blood serum or plasma of humans, mice, rats, and other animals in a 96-well format for increased throughput analysis. Blood can be collected in plain evacuated tubes or in the presence of common anti-coagulants: sodium citrate, ammonium oxalate and EDTA. **NOTE:** Heparin or Heparinized tubes should not be used because this will generate inaccurate readings. Serum should be separated from clotted blood by centrifugation as soon as possible and may be stored frozen (-20°C) prior to analysis.

PRINCIPLE OF THE ASSAY

Assessment of serum fatty acids is through a coupled reaction to measure non-Esterified fatty acids (NEFA). The initial step, carried out by acyl-CoA synthetase (ACS), produces fatty acyl-CoA thiol esters from the

NEFA, ATP, Mg, and CoA in the reaction. The acyl-CoA derivatives react with oxygen in the presence of acyl-CoA oxidase (ACOD) to produce hydrogen peroxide. Hydrogen peroxide in the presence of peroxidase (POD) allows the oxidative condensation of 3-methyl-N-ethyl-N-(β-hydroxyethyl)-aniline with 4-aminoantipyrine which forms a purple product that absorbs light at 550nm. This allows the concentration of NEFA to be determined from the optical density measured at 540 - 550nm.

HCOOH + ATP + CoA
$$\xrightarrow{ACS}$$
 Acyl-CoA + AMP + PP_i (NEFA)

Acyl-CoA + O₂ \xrightarrow{ACOD} 2,3-trans-Enoyl-CoA + H₂O₂

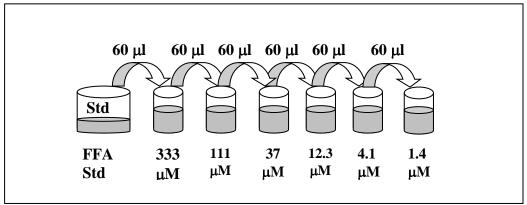
$$C_2H_4OH$$
 C_2H_4OH
 C_2H_4OH
 C_2H_4OH

Rev 06.10.2016 Page 2 of 7

ITEMS INCLUDED IN THE KIT

ITEM	DESCRIPTION	Cap Color	UNIT	QTY	STORAGE
Dilution Buffer	50.0 ml		BOTTLE	1	4°C
FFA Standard	1mM Stock. See page 3 for standard	AMBER	100µl/	2	4°C
	curve preparation		VIAL		
FFA Diluent A		YELLOW	50ML	1	4°C
FFA Diluent B*		PINK	25ML	1	4°C
Warning					
FFA Reagent A**	Reconstitute using 50 ml FFA Diluent A.	YELLOW	BOTTLE	1	4°C
! Warning	Discard remainder after 10 days				
FFA Reagent B	Reconstitute using 25 ml FFA Diluent B.	PINK	BOTTLE	1	4°C
	Discard remainder after 10 days				

Other equipment/reagents required but not provided with the kit:


- Multi-channel Pipet, single channel pipet and pipet tips
- Plate reader with a filter of 540 nm
- Incubator at 37°C
- Large gauge needle
- Tubes for diluting standards
- Disposable trays for reagents
- 96-well clear bottom assay plates

ASSAY PROCEDURE

1. Prepare the standard curve using the STANDARD SOLUTION as follows:

Briefly spin down the contents of the free fatty acid standard tube. Standards are: 0, 1.4, 4.1, 12.3, 37, 111, and 333 μ M fatty acid. Prepare as follows:

The kit standard solution is the 1.0 mM standard. Pipette 120 μ l of Dilution Buffer into 6 tubes (not provided). Pipette 60 μ l of the FFA Standard Stock into a tube labeled 333 μ M. Prepare a dilution series as depicted below. Mix each new dilution thoroughly before proceeding to the next. The Dilution Buffer alone serves as the zero standard.

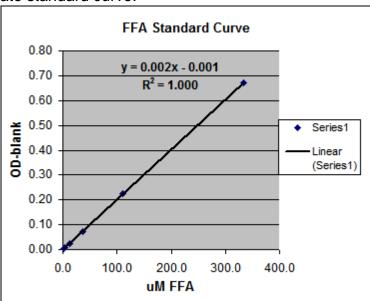
Rev 06.10.2016

^{*} Warning. May cause an allergic skin reaction. See SDS for more details

^{**} Warning. H302 - Harmful if swallowed; H402 - Harmful to aquatic life See SDS for more details

Note: The above dilution series generates enough volume to perform the standard curve in duplicate. If you wish to perform the standard curve in duplicate, please note that seven fewer data points can be assayed with this kit.

- 2. Also at this time prepare the FFA Reagent A by adding 50ml FFA Diluent A per bottle and gently invert. DO NOT VORTEX! Store any remaining solution at 2-8°C; it is stable for 10 days after reconstitution refrigerated (2-8°C).
- 3. Add 5 μ l (or 1 10 μ l) of serum or plasma to a 96-well plate (not provided). Add dilution buffer to each well to total 50 μ l including serum or plasma sample. **THIS RESULTS IN A 10x DILUTION OF YOUR SAMPLE (5 \mul in 50 \mul).** Add 50 μ l of each standard to empty wells.
- 4. Add the reconstituted FFA Reagent A to a disposable tray (not provided). Add 100 μl of FFA Reagent A to each well. Gently shake the plate to ensure mixing. Place in a 37 °C incubator for 10 minutes. Store any remaining solution at 2-8°C; it is stable for 10 days after reconstitution refrigerated (2-8°C).
- 5. Prepare the FFA Reagent B by adding 25ml FFA Diluent B to the 25ml FFA Reagent B bottle and gently invert. DO NOT VORTEX! Store any remaining solution at 2-8°C; it is stable for 10 days after reconstitution refrigerated (2-8°C).
- 6. Add the reconstituted FFA Reagent B to another disposable tray (not provided). Add 50 μl of FFA Reagent B to each well. Gently shake the plate to ensure mixing. Place in a 37 °C incubator for 10 minutes. Store any remaining solution at 2-8°C; it is stable for 10 days after reconstitution refrigerated (2-8°C).
- 7. Allow the plate to equilibrate to room temperature for 5 minutes. During this time, ensure that there are no bubbles in the solution mixture. Use a large gauge needle or clean pipet tip to pop any bubbles as this will result in inaccurate absorbance readings.
- 8. The optical density of each well is then measured at 540 nm.


FATTY ACID STANDARD CURVE

Generate standard curve: see example below

[DO NOT use this standard curve to generate your data. This is an example.]

Subtract the OD value of the $0\mu M$ standard from all OD values including the standard curve. Note: 1mM standard is commonly omitted from analysis due to lack of linearity between 333 μM and 1mM. Optionally, a 4-parameter fit may be used to calculate standard curve.

uM FFA	OD	OD	OD- blank	OD- blank	Avg OD- blank
0	0.05	0.048			0.049
1.4	0.051	0.053	0.002	0.004	0.003
4.1	0.056	0.058	0.007	0.009	0.008
12.3	0.070	0.075	0.021	0.026	0.024
37	0.119	0.122	0.070	0.073	0.072
111	0.274	0.277	0.225	0.228	0.227
333	0.689	0.750	0.640	0.701	0.671

Slope	0.002
Intercep	
t	-0.001
R^2	1.000

y = observed O.D. minus the blank

 $x = concentration of FFA in \mu M$

To calculate x for each y, (i.e. to change the observed O.D. into FFA concentration) use the following equation:

y=(slope) times (x) plus intercept

y=mx+b so x=(y-b)/m

x=(y-(-0.001))/0.002 where 0.002= slope of the line and -0.001= y intercept. Be careful to enter the proper sign for the y intercept value as it may be a negative number.

Data are expressed as μM free fatty acids.

REMEMBER TO ACCOUNT FOR THE DILUTION FACTOR IN STEP 3.

OPTION: express data as Fold induction over appropriate vehicle Fold induction = μ M free fatty acids SAMPLE μ M free fatty acids VEHICLE

The R² value should be equal or greater then 0.98 for the standard curve to be valid. Any R² values below 0.98, must have the standard curve run again.

APPENDIX A: PLATE LAYOUT _

Ξ	G	п	m	D	c	B	>	
								1
								2
								ω
								4
								ΟΊ
								6
								7
								œ
								9
								10
								1
								12

APPENDIX B: SFA-5 PROCEDURE FLOWCHART

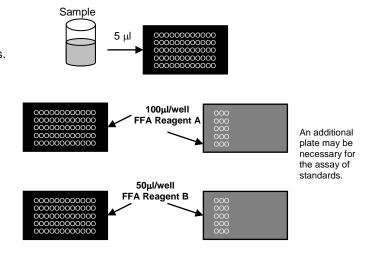
ON DAY OF ASSAY

Add 5 μl/well test sample and 45 μl/well dilution buffer to a blank 96-well plate.

Add 50 μl/well diluted standard curve to empty wells.

Reconstitute FFA Reagent A using Diluent A. Add 100μ l/well. Incubate 10 minutes @ 37° C.

Reconstitute FFA Reagent B using Diluent B. Add 50μ l/well. Incubate 10 minutes @ 37°C.



Place at room temp. for 5 minutes. Pop any bubbles in each well using a clean pipet tip or large gauge needle.

Measure the optical density of each well at 540 nm using a spectrophotometer plate reader.

Reminder: Sample was diluted in Step 3

