

96-well Serum/Plasma Glycerol Kit Free Glycerol Detection

Cat# SGA-1

INSTRUCTION MANUAL ZBM0043.00

STORAGE CONDITIONS

Reagents & Buffers: 4°C
 Glycerol Standard: -20°C

Blank assay plates (96-well): Room Temperature

For in vitro Use Only

LIMITED PRODUCT WARRANTY

This warranty limits our liability to replacement of this product. No other warranties of any kind, expressed or implied, including without limitation, implied warranties of merchantability or fitness for a particular purpose, are provided by Zen-Bio, Inc. Zen-Bio, Inc. shall have no liability for any direct, indirect, consequential, or incidental damages arising out of the use, the results of use, or the inability to use this product.

ORDERING INFORMATION AND TECHNICAL SERVICES

- Zen-Bio. Inc.
- 3200 Chapel Hill-Nelson Blvd., Suite 104
- PO Box 13888
- Research Triangle Park, NC 27709

Telephone (919) 547-0692
 Facsimile (FAX) (919) 547-0693

• Toll Free 1-866-ADIPOSE (866)-234-7673

Electronic mail (e-mail) information@zen-bio.com
 World Wide Web http://www.zen-bio.com

Rev 8/15/2008 Page 1 of 6

INTRODUCTION

This kit is designed to accurately determine the amount of glycerol present in blood serum or plasma of humans, mice, rats, and other animals in a 96-well format for increased throughput analysis. Blood can be collected in plain evacuated tubes or in the presence of common anti-coagulants: sodium citrate, ammonium oxalate and EDTA. **NOTE: Heparin or Heparinized tubes should not be used because this will generate inaccurate readings.** Serum should be separated from clotted blood by centrifugation as soon as possible and may be stored frozen (-20°C) prior to analysis.

PRINCIPLE OF THE ASSAY

Detection of Free Glycerol

Glycerol present in sample is phosphorylated by adenosine triphosphate (ATP) forming glycerol-1-phosphate (G-1-P) and adenosine-5'-diphosphate (ADP) in the reaction catalyzed by glycerol kinase. G-1-P is then oxidized by glycerol phosphate oxidase to dihydroxyacetone phosphate (DAP) and hydrogen peroxide (H_2O_2). A quinoneimine dye is produced by the peroxidase catalyzed coupling of 4-aminoantipyrine (4-AAP) and sodium N-ethytl-N-(3-sulfopropyl)m-anisidine (ESPA) with H_2O_2 , which shows an absorbance maximum at 540nm. The increase in absorbance at 540nm is directly proportional to glycerol concentration of the sample.

GLYCEROL + ATP
$$\longrightarrow$$
 G-1-P + ADP

G-1-P + O₂ \longrightarrow DAP + H₂O₂

H₂O₂ +4-AAP + ESPA \longrightarrow Quinoneimine dye + H₂O

ITEMS INCLUDED IN THE KIT _____

ITEM	DESCRIPTION	Сар	UNIT	QTY	STORAGE
		Color			
Assay Plate, Plate A	96-well assay plate, blank		PLATE	2	
Dilution Buffer	12 ml		BOTTLE	1	4°C
Glycerol Reagent A	Reconstitute with 11.0 ml deionized water prior to use.		BOTTLE	1	4°C
Tray	For multi-channel pipetters, clear polyvinyl	CLEAR	EACH	2	
Glycerol standard	Glycerol @ 1mM [Dilute with 200 μl Dilution Buffer to	ORANGE	50 μΙ/	1	-20°C
	make the 200 μM glycerol standard; see page 5 for recommended dilution scheme]		VIAL		

Other equipment/reagents required but not provided with the kit:

- Multi-channel Pipet, single channel pipet and pipet tips
- Plate reader with a filter of 540 nm
- Incubator at 37°C
- Large gauge needle
- Tubes for diluting standards

Rev 8/15/2008 Page 2 of 6

ASSAY PROCEDURE

1. Prepare the glycerol standards as follows:

Briefly spin down the contents of the glycerol standard tube before reconstitution. Pipette 200 μ l of Dilution Buffer into the 1 mM glycerol standard tube provided and mix well by vortexing. This produces a diluted stock glycerol standard of 200 μ M. Pipette 125 μ l of dilution buffer into 6 tubes (not provided). Using the newly diluted stock glycerol solution, prepare a dilution series as depicted below. Mix each new dilution thoroughly before proceeding to the next. The 200 μ M stock dilution serves as the highest standard, and the dilution buffer serves as the zero standard.

- 2. Also at this time prepare the Glycerol Reagent A by adding 11.0 ml room temperature deionized water per bottle and gently invert. DO NOT VORTEX! Use a pipet to ensure that the powder is completely dissolved. Store at room temperature. If using a Reagent A solution previously prepared and stored at 2-8°C, also bring to room temperature. Make sure there is enough Reagent A from one solution to treat all the points in the assay. It may be necessary to combine solutions. Store in a light protected bottle. Reconstituted Glycerol Reagent A is stable for 60 days refrigerated (2-8°C); store any remaining solution refrigerated (2-8°C).
- 3. Add 20 μ l (or 10 25 μ l) of serum or plasma to a well of a blank plate for assessment of free glycerol. Add 30 μ l of dilution buffer to each well to total 50 μ l including serum or plasma sample. **THIS RESULTS IN A 2.5x DILUTION OF YOUR SAMPLE (20 \mul in 50 \mul).** Add 50 μ l of each standard to empty wells (use another plate, if necessary).
- 4. Add the reconstituted Glycerol Reagent A solution to one of the disposable trays provided in the kit. Add $50~\mu l$ of Reagent A to each well of the glycerol plate. Gently, pipet up and down once to mix. Pop the bubbles using a large gauge needle or a clean pipet tip. The plate is then incubated at 25° C (room temperature) for 15 minutes.
- 5. The optical density of each well is then measured at 540 nm.

Rev 8/15/2008 Page 3 of 6

GLYCEROL STANDARD CURVE

Generate standard curve: see example below

[DO NOT use this standard curve to generate your data. This is an example.]

Subtract the OD value of the $0\mu M$ standard from all OD values including the standard curve.

μМ		OD -	
Glycerol	OD	blank	
3.125	0.054	0.014	
6.25	0.066	0.026	
12.5	0.082	0.042	
25	0.138	0.098	
50	0.214	0.174	
100	0.402	0.362	
200	0.711	0.671	

slope =	0.0034
intercept=	0.0075
$r^2=$	0.9985

y = observed O.D. minus the blank

 $x = concentration of glycerol in \mu M$

To calculate x for each y, (i.e. to change the observed O.D. into glycerol concentration) use the following equation:

y=(slope) times (x) plus intercept

y=mx+b so x=(y-b)/m

x=(y-0.0075)/0.003 where 0.003= slope of the line and 0.0075= y intercept. Be careful to enter the proper sign for the y intercept value as it may be a negative number.

Any OD values greater than the highest standard (200 μ M) should be suspect. The compound should be reassayed using a lower dose of the compound at treatment OR a dilute solution of the condition medium at the time of the assay.

The R² value should be equal or greater than 0.98 for the standard curve to be valid. Any R² values below 0.98, must have the standard curve run again.

Data are expressed as µM glycerol.

REMEMBER TO ACCOUNT FOR THE DILUTION FACTOR IN STEP 3.

APPENDIX A: PLATE LAYOUT _

Ξ	G	п	m	D	c	8	>	
								1
								2
								ဖ
								4
								ΟΊ
								6
								7
								œ
								9
								10
								1
								12

APPENDIX B: PROCEDURE FLOWCHART

Glycerol Detection

Add 20 μ l/well test sample and 30 μ l/well dilution buffer to one of the blank assay plates provided. Add 50 μ l/well diluted standard curve to empty wells.

Reconstitute Glycerol Reagent A. Add 50µl/well.

Incubate 15 minutes @ room temperature.

Measure the optical density of each well at 540 nm using a spectrophotometer plate reader.

Reminder: Sample was diluted in Step 3

Rev 8/15/2008 Page 6 of 6