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We have identified a gene encoding transcription
factor activating enhancer binding protein-2�
(TFAP2B) as a candidate for conferring suscepti-
bility to type 2 diabetes. Although we have also
found that TFAP2B was preferentially expressed in
adipose cells in a differentiation-dependent man-
ner, the mechanisms by which the gene and gene
polymorphisms contribute to conferring suscepti-
bility to the disease have not yet been elucidated.
The aim of this study was to evaluate the impact of
the polymorphisms within the TFAP2B gene on
conferring susceptibility to type 2 diabetes. We
identified that a 300-bp DNA fragment in intron 1 of
TFAP2B had significant enhancer activity, and the
variations of this region affected this enhancer ac-
tivity in differentiated adipocytes. In an experiment

using adenovirus vectors encoding TFAP2B, the
expression of TNF-� gene was shown to be ele-
vated in the TFAP2B overexpressing cells com-
pared with those in control cells. Furthermore, we
demonstrated that the expression of TFAP2B was
increased in the adipose tissues of subjects with
the disease-susceptibility allele, and the plasma
levels of TNF-� and high sensitivity C-reactive pep-
tide were significantly elevated in the patients with
the disease-susceptibility allele. These results sug-
gest that TFAP2B may contribute to the pathogen-
esis of type 2 diabetes through regulation of adi-
pocytokine gene expression, and that TFAP2B may
be a promising target for treatment or prevention
of this disease. (Molecular Endocrinology 20:
1104–1111, 2006)

TYPE 2 DIABETES AFFECTS more than 100,000,000
individuals worldwide (1). Although the precise

mechanism is still not well known, the pathogenesis of
type 2 diabetes is thought to be the consequence of
insulin resistance in peripheral tissues combined with
dysfunction of �-cells in pancreatic islets (2, 3).

Recent studies in the field of obesity research have
suggested that adipose tissue functions as an endocrine
organ and secretes a number of cytokines known as
adipocytokines, and these include TNF-�, IL-6, IL-8, adi-
ponectin, resistin, leptin, and others. These adipocyto-
kines have been reported to be involved in systemic
insulin responsiveness and are thus considered to play
pivotal roles in the pathogenesis of type 2 diabetes (4–7).

We have identified the activating enhancer binding
protein (AP)-2� transcription factor gene (TFAP2B) lo-
cated on chromosome 6p12 as a susceptibility gene to
type 2 diabetes by a genome-wide association study

using 58,266 gene-based SNPs (single-nucleotide
polymorphisms) as genetic markers (8). Several varia-
tions within TFAP2B were shown to be significantly
associated with type 2 diabetes in the Japanese pop-
ulation as well as in the United Kingdom population.
This association was especially strong with a variable
number of tandem repeat (VNTR) locus in the first
intron (�2 � 11.0; P � 0.0009; odds ratio � 1.53; 95%
confidence interval, 1.19–1.98), and a nearby SNP (�2

� 11.2; P � 0.0008; odds ratio � 1.54; 95% CI,
1.20–1.99). We also reported that mouse transcription
factor AP-2� gene (Tcfap2b) was preferentially ex-
pressed in adipose cells in a differentiation-dependent
manner (8). These results suggest that TFAP2B plays
some roles in the pathogenesis of type 2 diabetes
through the regulation of adipocyte functions. How-
ever, the precise mechanisms by which the polymor-
phism within TFAP2B confers the susceptibility to the
disease have not yet been elucidated.

The AP-2 transcription factor family consists of four
members, AP-2�, AP-2�, AP-2�, and AP-2�, each en-
coded by a separate gene (9–12). AP-2 proteins ho-
mo- and heterodimerize through a unique C-terminal
helix-span-helix motif and bind palindromic DNA rec-
ognition sequences (consensus 5�-GCCN3GGC-3�)
through the basic domain that lies immediately N-
terminal of the dimerization motif (13). The dimerization/
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DNA-binding region is highly conserved among the AP-2
isoforms. AP-2 transcription factors appear to execute
crucial, overlapping (14, 15), yet distinct functions during
embryonic development (16–18) and malignant transfor-
mation (19–21). Although a member of this transcription
factor family, AP-2�, has been reported to inhibit ad-
ipogenesis (22, 23). Functional roles of AP-2� in the
adipocytes have not yet been identified.

In the study reported here, we provide evidence that
polymorphisms in the first intron of TFAP2B affect the tran-
scriptional activity of the gene in differentiated adipocytes
and confer susceptibility to type 2 diabetes through the
regulation of adipocytokine gene expression.

RESULTS

Transfection Experiment in 3T3-L1 Cells

Polymorphisms within TFAP2B are shown in Fig. 1A.
Because the polymorphisms in the first intron were

shown to be most strongly associated with type 2
diabetes (8), and no exonic polymorphisms were iden-
tified, we examined the function of 300-bp fragments
containing both the SNP at intron 1�774 and nearby
VNTR for transcriptional activity in 3T3-L1 cells at dif-
ferent stages of differentiation. As shown in Fig. 2A,
the 300-bp fragment showed significant enhancer ac-
tivity both in the undifferentiated and in the differenti-
ated adipocytes, although neither single nor multiple
copies of a short DNA fragment (�766 to �785 in the
first intron) had enhancer function. We next examined
whether the enhancer activity of this fragment differed
between the fragment corresponding to the disease
susceptibility allele and that of the major allele. Be-
cause the two variations (intron 1�774T/G and VNTR)
were in almost complete linkage disequilibrium (8), we
compared the disease-susceptibility allele that con-
tained both substitutions (S allele: T nucleotide for
SNP, nine repeats for VNTR) with the major allele (N
allele: G nucleotide for SNP, 10 repeats for VNTR). The
results indicated that the fragment corresponding to

Fig. 1. Genetic Variations within the TFAP2B
A, Polymorphisms within the TFAP2B gene. *, Insertion/deletion polymorphisms; †, tandem-repeat polymorphisms; no symbol,

SNPs. B, Nucleotide sequences of the 300-bp fragment containing the SNP and the VNTR in the first intron. The SNP (�774T/G)
is shown by an asterisk, and VNTR regions are boxed. Underline denotes a sequence similar to E2F binding motif.
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the S allele had greater enhancer activity than the N
allele in the cells 5 d after inducing differentiation,
although there was no significant difference in the cells
after 3 d of differentiation.

EMSA

Because the DNA segment corresponding to the par-
ticular SNP at �774 of the first intron was similar to the
E2F-binding motif (Fig. 1B), we performed an EMSA
using a 20-bp probe (�766 to �785 in the first intron)
and identified two bands that were likely to reflect
specific binding of protein to the DNA (�, � in Fig. 2B).
Interestingly, the �-band was seen only when the
20-bp probe containing the S allele (T probe) was
incubated with a nuclear extract from differentiated
3T3-L1 cells (Fig. 2, B and C).

Expression of TFAP2B in Human Adipose Tissues

We tested adipose samples and genomic DNA for
eight independent individuals obtained from Genom-
ics Collaborative (Cambridge, MA). Among them, only
two subjects possessed the T/G genotype for intron
1�774. As shown in Fig. 3, the expression of TFAP2B
was higher in subjects with the T/G genotype com-
pared with those with the G/G genotype. The expres-
sion of TFAP2B in adipose tissue from two subjects
with the G/G genotype could not be detected.

Effects of TFAP2B on Adipokine Gene Expression

To discover a possible candidate gene(s) that is reg-
ulated by TFAP2B, we examined the expression of
adipocytokine genes in human adipocytes overex-
pressing the TFAP2B gene and identified significant
increases in the expression of TNF-� in the TFAP2B
overexpressing cells compared with those in control
cells (Fig. 4, 1.3 � 0.3 vs. 6.2 � 0.7; LacZ vs. TFAP2B;
mean � SD; P � 0.0004). Although the expression of
IL-6 seemed to be increased in TFAP2B overexpress-Fig. 2. Functional Analyses of Genetic Variations in the

TFAP2B Gene
A, Enhancer activity of transfected human TFAP2B frag-

ments in 3T3-L1 cells 3 and 5 d after induction of differenti-
ation. One or three copies of the sequence corresponding to
�766 to �785 in the first intron, or the 289- or 299-bp
sequence containing the SNP at �774 and also the VNTR in
the first intron, were subcloned upstream of the heterologous
promoter of pGL3 vector and transfected to 3T3-L1 cells.
Values are expressed as means � SEM from four independent
experiments. *, P � 0.01 vs. promoter alone; #, P � 0.0001
vs. other constructs. B, EMSA using nuclear extracts from
3T3-L1 cells, performed on the indicated days after inducing
differentiation. The sequence from �766 to �785 in the first
intron of human TFAP2B was used as a probe. C, Competi-
tion experiments using nuclear extracts from murine 3T3-L1
cells 7 d after inducing differentiation. The nuclear extracts
were preincubated with a 100-fold excess of unlabeled oli-
gonucleotide. T probe, T at position �774; G probe, G at
position �774; E2F, E2F consensus oligonucleotide; Luc,
luciferase.

Fig. 3. Expression of TFAP2B in Human Adipose Tissue
Genotype for the SNP (�774 T/G in intron 1) is indicated

under each bar. ND, Not detected; BACT, �-actin.
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ing cells, the difference between TFAP2B and LacZ
overexpressing cells was not statistically significant
(2.4 � 1.5 vs. 4.8 � 3.0; LacZ vs. TFAP2B; mean � SD;
P � 0.29). The expression of adiponectin and leptin
was similar in the overexpressing and control cells
(Fig. 4).

Plasma Adipocytokines and High-Sensitivity
C-Reactive Peptide

We subsequently measured plasma levels of TNF-�,
adiponectin, and hs-CRP in 228 patients and exam-

ined the association between their concentrations and
TFAP2B genotype. Plasma TNF-�, and hs-CRP were
significantly elevated in subjects possessing the dis-
ease-susceptibility allele (Table 1, TNF-� [pg/ml] 7.1 �
5.2, 5.4 � 4.5, 5.0 � 3.7, T/T, T/G, G/G, respectively,
mean � SD, P � 0.038 T/T vs. G/G, hs-CRP [�g/ml]:
0.83 � 0.55, 0.62 � 0.41, 0.58 � 0.42, T/T, T/G, G/G,
respectively, mean � SD, P � 0.038 T/T vs. G/G). The
plasma adiponectin, body mass index, HbA1c, and
gender distribution were not statistically different
among these groups.

DISCUSSION

In the present study, we demonstrated that the poly-
morphisms in the first intron of TFAP2B affected the
transcriptional activity of the gene. Our results also
indicated that the subjects with the disease-suscepti-
bility allele had higher expression of TFAP2B in adi-
pose and had increased expression of adipocytokines,
such as TNF-�.

We have identified the TFAP2B as a susceptibility
gene to type 2 diabetes by genome-wide case-control
association studies using gene-based SNPs (8). This
approach proved to be successful in the discovery of
candidate genes for other diseases, such as myocar-
dial infarction (24) and diabetic nephropathy (25, 26).

AP-2� is a well-known transcription factor and has
been reported to play an important role in embryonic
development. In mice, expression of AP-2� decreases
significantly after birth (10). Mice lacking AP-2� die
within 1 or 2 d after birth from renal failure due to
polycystic kidney disease (18). In humans, mutation of
TFAP2B causes Char syndrome, a condition charac-
terized by patent ductus arteriosus and variable de-
grees of facial dysmorphism and hand abnormalities
(27); those features suggest that AP-2� plays an im-
portant role in the embryonic development of various
tissues. However, to date, no evidence other than our
previous report (8) has emerged to suggest that AP-2�
has a role in the pathogenesis of type 2 diabetes.

To investigate possible roles of TFAP2B in the
pathogenesis of type 2 diabetes, we first examined the
expression of this gene by quantitative real-time PCR

Fig. 4. Results of Quantitative RT-PCR for Adipocytokine
Genes in Cultured Human Adipocytes Transfected with ad-
eno-AP2B or adeno-LacZ

Values are expressed as means � SD from three indepen-
dent experiments. *, P � 0.001 vs. control.

Table 1. Clinical and Biochemical Parameters in the Subjects Divided According to the Genotype of the Polymorphism at the
First Intron of TFAP2B (Intron1�774 T/G)

TT TG GG

n 23 99 106
Sex (male:female) 6:17 47:52 44:62
Age (yr) 64.3 � 9.7 61.6 � 9.9 61.8 � 10.6
BMI (kg/m2) 22.7 � 6.0 23.7 � 3.2 23.2 � 3.2
HbA1c (%) 7.3 � 1.1 7.2 � 1.2 7.1 � 1.2
Plasma TNF-� (pg/ml) 7.1 � 5.2a 5.4 � 4.5 5.0 � 3.7
Plasma hsCRP (�g/ml) 0.83 � 0.55a 0.62 � 0.41 0.58 � 0.42
Plasma adiponectin (�g/ml) 10.0 � 5.3 10.3 � 5.9 9.7 � 5.8

Values are presented as mean � SD. BMI, Body mass index.
a P � 0.05 vs. GG.
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using RNA from human cultured adipocytes. The ex-
pression of TFAP2B was significantly higher in differ-
entiated adipocytes compared with undifferentiated
preadipocytes; the average increase was 4.94-fold rel-
ative to undifferentiated preadipocytes (data from our
unpublished observations). Because this result was
consistent with our previous observations in mouse
3T3-L1 cells (8), it was suggested that TFAP2B had
some functions in differentiated adipocytes.

Cumulative evidence has indicated that differenti-
ated adipocytes have an endocrine-related function to
secrete several cytokines, called “adipocytokines,”
which include TNF-�, IL-6, leptin, adiponectin, and
others (28–30). These genes are found to contain bind-
ing sites for AP-2 in their promoter (31, 32). Given such
observations, we suggest that TFAP2B plays a key
role in the pathogenesis of type 2 diabetes by affecting
insulin responsiveness through the transcriptional reg-
ulation of these adipocytokine genes in differentiated
adipocytes.

To elucidate the possible mechanism by which
TFAP2B and TFAP2B polymorphisms contribute to
the susceptibility to type 2 diabetes, we examined the
function of the 300-bp DNA fragment containing the
SNP site at intron 1�774, and the nearby VNTR, which
were both shown to be strongly associated with the
disease (8). The result indicated that the 300-bp frag-
ment had significant enhancer activity both in differ-
entiated and immature adipocytes, whereas neither
single nor multiple copies of a short DNA fragment
(�766 to �785) showed enhancer activity (Fig. 2A).
Because the VNTR sequence did not have enhancer
activity by itself (data not shown), it is likely that these
two fragments cooperate with each other to regulate
transcriptional activity. In the present study, we also
demonstrated that a DNA fragment containing both
substitutions (S allele, T nucleotide for SNP�774, nine
repeats for VNTR) had greater enhancer activity than a
fragment corresponding to the major allele (N allele, G
nucleotide for SNP�774, 10 repeats for VNTR) in dif-
ferentiated adipocytes (Fig. 2A). We found a specific
protein binding to the particular DNA (�766 to �785 in
the first intron) that could be observed only when
nuclear extracts from differentiated adipocytes were
incubated with the S allele (T probe) (Fig. 2, B and C).
Therefore, this short core sequence may be critical for
the regulation of the transcriptional activity of TFAP2B,
although the cooperation of this 20-bp fragment with
VNTR sequence was necessary for the enhancer ac-
tivity. Because the sequence around this SNP site was
similar to the E2F consensus sequence, we performed
super-shift analyses using the antibodies for E2F pro-
teins. However, antibodies for several E2F proteins
could not affect the mobility of the DNA-protein com-
plex (our unpublished observations), which suggested
the binding protein was a novel protein other than E2F.

These observations suggest that the subjects with
the S allele had higher expression of TFAP2B in adi-

pose tissues than the subjects with the N allele. Our
subsequent human study using RNA from adipose
tissues (Fig. 3) could further support this hypothesis.

We then examined the effect of overexpression of
TFAP2B on the expression of several adipocytokine
genes in human differentiated adipocytes. The results
indicated that there were clear differences in the ex-
pression of TNF-� between TFAP2B overexpressing
cells and control cells (Fig. 4). Because TNF-� pro-
duced in adipose cells has been reported to be impli-
cated in systemic insulin resistance (33), the increase
in the expression of the TFAP2B in differentiated adi-
pocytes results in the elevation of expression of the
TNF-� gene and may contribute to the pathogenesis
of type 2 diabetes in individuals having the disease-
susceptibility allele.

Finally, to further verify our hypothesis, we exam-
ined plasma levels of TNF-� and hs-CRP; the latter
was reported to correlate with plasma levels of several
adipocytokines (34). Interestingly, the plasma TNF-�

and hs-CRP levels were significantly elevated in the
patients with the disease-susceptibility allele (Table 1).

In summary, our present study indicated that the
polymorphisms in the first intron of TFAP2B affect the
transcriptional activity of the gene in differentiated adi-
pocytes and confer susceptibility to type 2 diabetes
through the regulation of adipocytokine gene expres-
sion, such as TNF-�.

MATERIALS AND METHODS

Materials

Poly-(dAdT) was purchased from Sigma-Aldrich Co. (St.
Louis, MO), deoxynucleotide triphosphates and EX Taq HS
DNA polymerase were purchased from Takara Bio, Inc. (Otsu,
Shiga, Japan), and SYBR Green I was purchased from Cam-
brian Chemicals, Inc. (Oakville, Ontario, Canada).

A mouse 3T3-L1 cell line was obtained from the Health
Science Research Resources Bank (Osaka, Japan). Cells
were grown to confluence and induced to differentiate into
adipocytes according to methods described previously (35).
Human cultured adipocytes were obtained from Zen-Bio, Inc.
(Research Triangle Park, NC). Total RNA was extracted from
these cells by Trizol Reagent (Invitrogen, Carlsbad, CA).

EMSA for DNA-Binding Protein

Nuclear extracts from 3T3-L1 cells were prepared by a pro-
cedure described previously (36). Oligonucleotides compris-
ing the sequences for T probe (5�-CTA GCC GCG CTC TCC
AAA GCC CTT-3�) and for G probe (5�-CTA GCC GCG CTC
GCC AAA GCC CTT-3�) were end labeled with [�-32P]ATP
(Amersham Biosciences, Piscataway, NJ). Nuclear extract (6
�g) was placed in binding buffer [final concentration: 20 mM

HEPES (pH 7.9), 30 mM NaCl, 20 mM KCl, 2 mM MgCl2, 2 mM

dithiothreitol, 0.1 mg/ml BSA, and 1 �g poly(dAdT)] at room
temperature for 1 h and then incubated with the radiolabeled
probe at room temperature for 20 min. The protein-DNA
complexes were analyzed on a 4% polyacrylamide gel. The
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gel was dried and exposed to BioMax XAR film (Eastman
Kodak, Rochester, NY).

Plasmid Construction and Transfection Experiments

Various DNA fragments of the first intron of TFAP2B were
subcloned into the pGL3-promoter vector (Promega Corp.,
Madison, WI) at its multiple-cloning site upstream of the
SV-40 promoter. On appropriate days after inducing differ-
entiation of the 3T3-L1 cells, we introduced each construct to
the cells along with a sea-pansy luciferase control vector,
pRL-TK (Promega), using the liposome transfection proce-
dure (FuGene6, Roche, Mannheim, Germany). Forty-eight
hours after transfection, luciferase activities were determined
by the Dual Luciferase Reporter Assay System (Promega),
and the luminescence of firefly luciferase was corrected by
that of sea-pansy luciferase, which reflected transfection
efficiency.

Preparation of Adenovirus Vectors and Infection

Adenovirus vector encoding human TFAP2B was prepared
by Takara Bio, Inc. (Otsu, Shiga, Japan). LacZ encoding
vector was used for the control. Human differentiated adipo-
cytes were transduced with a multiplicity of infection of 50
plaque-forming units/cell for 16 h. At the indicated time after
infection, the total RNA was extracted for RT-PCR.

RT-PCRs

First-strand cDNA was prepared by reverse transcription of
total RNA extracted from the human cultured adipocytes, or
human adipose tissues obtained from Genomics Collabora-
tive (Cambridge, MA), by oligo-dT priming, using Superscript
III reverse transcriptase (Invitrogen, Carlsbad, CA).

Quantitative RT-PCR was performed by a TaqMan assay
or by a method using SYBR Green detection. The amplifica-
tions were carried out in a 25-�l reaction volume containing
1� EX Taq Buffer, 200 nM deoxynucleotide triphosphate
mixture, 800 nM each primer, 200 nM TaqMan probe (for
TaqMan assay) or 1/20,000 SYBR Green (for SYBR Green
detection), 0.125 U EX Taq HS DNA polymerase (Takara Bio,
Inc.) and 5 ng template. The thermal profile was 50 C for 2
min, 95 C for 10 min followed by 40 cycles of 95 C for 30 sec,
63 C for 30 sec, and 72 C for 30 sec. The amplification and

quantification were performed using the Mx3000P Multiplex
Quantitative PCR system (Stratagene, CA). Primers and Taq-
Man probes for amplifications are described in Table 2.

Subjects and DNA Preparations

DNA samples were obtained from patients who regularly visit
the outpatient clinics of Shiga University of Medical Science.
Written informed consent was obtained from each patient,
and DNA extraction was performed using a standard phenol-
chloroform procedure. The genotype of TFAP2B SNP was
determined using the invader assay as previously described
(8). The protocol was approved by the ethics committees of
the Institute of Physical and Chemical Research and Shiga
University of Medical Science.

Measurement of TNF-�, Adiponectin, and hs-CRP
in Plasma

Plasma concentrations of TNF-� and adiponectin were mea-
sured by ELISAs using an ELISA kit (Human TNF-� Quan-
tikine HS; R&D Systems, Minneapolis, MN; Human adiponec-
tin ELISA kit; Otsuka Pharmaceutical, Inc., Tokyo, Japan).
hs-CRP was determined by a latex-enhanced immunoneph-
elometric assay on a BN-II analyzer (Dade Behring, Marburg,
Germany).

Statistical Analysis

For transfection experiments and evaluation of TNF-�, adi-
ponectin, and hs-CRP in plasma, comparisons among three
or more groups were analyzed by one-way ANOVA, followed
by Scheffe’s tests to evaluate statistical differences between
the two groups.
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