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Whereas the uptake of oxidized lipoproteins by scavenger
receptor CD36 in macrophages has been associated with foam
cell formation and atherogenesis, little is known about the
role of CD36 in regulating lipid metabolism in adipocytes.
Here we report that treatment of 3T3-L1 adipocytes with
hexarelin, a GH-releasing peptide that interacts with CD36,
resulted in a depletion of intracellular lipid content with no
significant change in CD36 expression. Microarray analysis
revealed an increased pattern in several genes involved in
fatty acid mobilization toward the mitochondrial oxidative
phosphorylation process in response to hexarelin. Interest-
ingly, many of these up-regulated genes are known targets of
peroxisomal proliferator-activated receptor (PPAR)-�, such
as FATP, CPT-1, and F1-ATPase, suggesting that adipocyte
response to hexarelin may involve PPAR� activation. Expres-
sion studies also indicate an increase in thermogenic markers

PPAR� coactivator 1� and uncoupling protein-1, which are
normally expressed in brown adipocytes. Electron micros-
copy of hexarelin-treated 3T3-L1 adipocytes showed an in-
tense and highly organized cristae formation that spans the
entire width of mitochondria, compared with untreated cells,
and cytochrome c oxidase activity was enhanced by hexarelin,
two features characteristic of highly oxidative tissues. A sim-
ilar mitochondrial phenotype was detected in epididymal
white fat of mice treated with hexarelin, along with an in-
creased expression of thermogenic markers that was lost in
treated CD36-null mice, suggesting that the ability of hexare-
lin to promote a brown fat-like phenotype also occurs in vivo
and is dependent on CD36. These results provide a potential
role for CD36 to impact the overall metabolic activity of fat
usage and mitochondrial biogenesis in adipocytes. (Endocri-
nology 148: 1009–1018, 2007)

THE MAJOR ROLE of the adipose tissue is to store energy
in the form of triglycerides and release it as fatty acids

in response to an increase in energy demand, such as during
fasting or exercise. Peripheral tissues such as skeletal muscle
and heart oxidize fatty acids in mitochondria to produce
ATP. However, when energy storage is in excess, such lipid
accumulation in adipose tissue can result in many patho-
logical states associated with the metabolic syndrome, in-
cluding central obesity, type 2 diabetes, and insulin resis-
tance (1, 2).

The scavenger receptor CD36, also known as fatty acid
translocase, is expressed in adipocytes to mediate the up-
take of long chain fatty acids (3), but much of the char-
acterization of the role of CD36 has focused on its scav-
enging ability to interact and mediate the internalization

of oxidized low-density lipoproteins (oxLDL) in macro-
phages. The selective uptake of oxLDL by CD36 is con-
sidered a critical step in the atherogenic formation of foam
cells in the extracellular matrix of lesion-prone sites of the
arterial wall (4). In addition to initiating a proinflamma-
tory response by monocytes/macrophages, such internal-
ization of oxLDL by CD36 provides a source of oxidized
fatty acids and oxysterols that serve as endogenous li-
gands for the activation of the nuclear receptors peroxi-
somal proliferator-activated receptor (PPAR)-� and liver X
receptor (LXR)-�, and subsequent up-regulation of down-
stream targets involved in reverse cholesterol transport,
such as ATP-binding cassette transporters ABCA1 and
ABCG1, and apolipoprotein E (5, 6).

Our recent work has identified hexarelin and other ana-
logs of the GH-releasing peptide (GHRP) family as high
affinity ligands of CD36 (7, 8). GHRPs were originally de-
scribed to stimulate central GH release through binding of
the GH secretagogue-receptor-1a, a G protein-coupled re-
ceptor later defined as the receptor for ghrelin and expressed
predominantly in the hypothalamic-pituitary region (9, 10).
In recent studies, we observed that GHRPs markedly de-
creased plaque formation in a mouse model of atheroscle-
rosis, an effect that was shown to require CD36 expression
(11, 12). These beneficial effects of GHRPs on cholesterol
metabolism were dependent on PPAR� and the activation of
the PPAR�-LXR�-ABC metabolic cascade in macrophages,
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leading to cholesterol efflux into the high-density lipoprotein
reverse pathway (12).

Whereas the role of CD36 in mediating cholesterol and
fatty acid uptake by macrophages is well characterized, little
is known about how CD36 may impact the overall metabolic
activity of fat storage and mobilization by adipocytes. Here
we report on the changes in expression of genes related to
fatty acid import and oxidation as well as in morphological
changes of mitochondria in adipocytes induced by GHRP
hexarelin. The resulting increase in expression of F1-ATP
synthase, coactivator PPAR� coactivator (PGC)-1� and un-
coupling protein (UCP)-1, all normally found in brown adi-
pocytes, suggests that fatty acids are ushered toward mito-
chondria oxidative phosphorylation and biogenesis, rather
than being converted to triglycerides for their subsequent
storage in lipid vesicles. The overall effect is a decrease in
total lipid content in fat cells, which provides a functional
role of CD36 to modulate fatty acid metabolism and mito-
chondrial functions.

Materials and Methods
Cell culture and treatments

Mouse 3T3-L1 preadipocytes were grown in DMEM supplemented
with 10% fetal calf serum. Two days after confluence (d 0), adipocyte
differentiation was initiated with the addition of 115 �g/ml 3-isobutyl-
1-methylxanthine, 1 �m dexamethasone, and 0.167 �m insulin in DMEM
supplemented with 10% fetal bovine serum (FBS) for 2 d. On d 2, the
media was replaced with DMEM/10% FBS containing insulin for 2 more
d and then maintained in DMEM/10% FBS until d 8. Treatments with
hexarelin (10�7 to 10�5 m) and troglitazone (8 �m) were done for 48–72
h with fresh medium replacement at intervals of 24 h.

Lipid staining

3T3-L1 cells were fixed with 3.7% formaldehyde/PBS and stained
with oil red O (Sigma, St. Louis, MO). Quantification of lipid accumu-
lation was achieved by extracting oil red O from stained cells with
isopropyl alcohol and measuring the OD of the extracts at 510 nm.

Triglyceride measurement

Lipids from differentiated 3T3-L1 adipocytes were extracted with
Folch solution consisting of a mixture of 2:1 (vol/vol) chloroform/
methanol and resuspended in 20% Thesit (Sigma) in Folch solution
before evaporation under nitrogen gas. Triglyceride content was deter-
mined using a colorimetric assay kit (Zen-bio, Research Triangle Park,
NC) and normalized against total protein from each sample determined
by Bradford reagent (Sigma).

Microarray analysis

Differentiated 3T3-L1 adipocytes were treated with 10�5 m hexarelin
or 8 �m troglitazone for 48 h. Total RNA was isolated from 3T3-L1 cells
using TRIzol reagent (Invitrogen, Burlington, Ontario, Canada), accord-
ing to the manufacturer’s protocol. Biotinylated cRNA was generated
from 10 �g of total RNA, and hybridized onto mouse 430.2 oligonu-
cleotide arrays. All procedures were followed according to Affymetrix
protocols (Santa Clara, CA). Data were analyzed and compared with a
second set of hybridization experiments using the Gene-Chip analysis
suite software (Affymetrix) and representative results were generated
with TM4 software (TiGR, The Institute for Genomic Research, Rock-
ville, MD).

RT-PCR analysis

3T3-L1 cells were treated as above and cDNA was synthesized from
400 ng of total RNA using oligo(dT) primers and RevertAid H minus
M-MuLV reverse transcriptase (Fermentas, Burlington, Ontario, Can-

ada). PCR amplification was usually performed in a volume of 20 �l with
0.5–1 �l of reverse transcription reaction for 25–35 cycles. Sequences of
the murine primers used in PCR are available upon request. The PCR
products were separated on a 2% agarose gel, stained with ethidium
bromide, and the relative signal intensity was analyzed (Alpha Innotech,
San Leandro, CA) from at least three separate experiments.

Cytochrome c oxidase (COX) activity

COX activity was measured on isolated mitochondria from treated
and untreated 3T3-L1 adipocytes. Briefly, adipocytes were collected and
resuspended in mitochondrial buffer [0.2 mm EDTA, 0.25 m sucrose, and
0.1 mg/ml digitonin in 10 mm Tris (pH 7.8)]. Cells were ruptured using
a glass-Teflon Potter-Elvehjem homogenizer, and the homogenates were
centrifuged at 1000 � g for 10 min. Mitochondria were then pelleted at
12,000 � g spin for 15 min and resuspended in mitochondrial buffer
supplemented with protease inhibitor cocktail (Roche, Laval, Québec,
Canada). Protein content was determined by the Bradford method (Bio-
Rad, Mississauga, Ontario, Canada). COX activity was determined from
10 �g of mitochondrial proteins from each treatment according to the
manufacturer’s protocol (Sigma). The activity was calculated from the
rate of decrease in absorbance of ferrocytochrome c at 550 nm (� � 21.84
mm�1cm�1), added to the assay at a final concentration of 10 �m, and
represented as milliunits per milligram of protein per minute where 1
U is the amount of enzyme needed to oxidize 1 �mol of ferrocytochrome
c per minute (pH 7.0) at room temperature. To assure total permeabi-
lization of mitochondrial membrane, the assay was performed in the
presence of 2.5 mm n-dodecyl �-d-maltoside (Sigma). No significant
COX activity was detected in the 12,000 � g spin supernatants.

Fluorescence microscopy

Eight-day differentiated adipocytes seeded in Lab-Tek coverglass
chambers (Nalge Nunc, Rochester, NY) were treated for 72 h with either
hexarelin or troglitazone. Live cells are then rinsed with PBS and labeled
at 37 C for 15 min with 1 mg/ml rhodamine-123, a mitochondrial-
specific fluorochrome (Sigma), as described by the manufacturer. Mi-
tochondria are visualized by fluorescence microscopy (TE-2000; Nikon,
Melville, NY) with an excitation at 488 nm and emission at 525 nm.
Photobleaching is reduced with 1 mg/ml ascorbic acid.

Antibodies and immunoblotting analysis

Antibodies to PPAR�, ATP synthase (F1 subunit), PGC-1�, adipocyte-
specific fatty acid binding protein (aP2) and �-actin were obtained from
Santa Cruz Biotechnology (Santa Cruz, CA), and the anti-UCP1 and
-UCP2 antibodies were purchased from Calbiochem (San Diego, CA).
The antibody against CD36 has been described (8). Immunoblotting
analysis was performed as described (13). Briefly, cells were lysed in PBS
buffer containing 1% Triton X-100, 0.5% deoxycholate acid, 0.1% sodium
dodecyl sulfate, 1 mm phenylmethylsulfonyl fluoride, and protease in-
hibitors (Roche). Proteins were then resolved by SDS-PAGE and trans-
ferred to nitrocellulose for immunoblotting. Membranes were blocked
at 4 C with blocking reagent (Roche) in Tris-buffered saline, probed with
selected antibodies, and signals revealed by enhanced chemilumines-
cence using appropriate horseradish peroxidase-conjuguated secondary
antibodies. For fat tissue, proteins were isolated using Trizol standard
procedure and resuspended in 1% sodium dodecyl sulfate for immu-
noblot analysis.

In vivo experiments

Wild-type C57BL/6 and CD36-deficient mice were previously de-
scribed (11) and maintained in a 12-h dark, 12-h light cycle with a
standard pelleted diet and water ad libitum. At 12 wk of age, male mice
were fed a 60% kcal/60% fat diet (Research Diets Inc., New Brunswick,
NJ) and treated with sc injection of 100 �g/kg�d hexarelin, a dose known
not to promote GH release (14), or 0.9% NaCl (control) for 12 wk, as
previously described (12). Fat tissues were collected from the epididy-
mal fat pads of control and treated mice and rapidly frozen at �80 C.
All experimental procedures were done in accordance with the Insti-
tutional Animal Ethics Committee of the University of Montreal and the
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Canadian Council on Animal Care guidelines for use of experimental
animals.

Electron microscopy

3T3-L1 cells and mouse fat tissue were fixed in 3% glutaraldehyde in
0.1 m phosphate buffer (pH 7.3). Samples were postfixed with 4% OsO4
and dehydrated with ethanol. Before sectioning, tissues were embedded
in epoxide resin (Epon 812; Sigma). Ultrathin cryosections were collected
on metal grids and poststained with electron-dense uranyl acetate and
lead citrate solutions and electron micrographs were recorded with an
electron microscope (model 208S; Philips Medical Systems, Andover,
MA). Mitochondria size and cristae formation were determined using an
image analyzer (Alpha Innotech).

Results
CD36 ligand hexarelin decreases total lipid content in
mature 3T3-L1 adipocytes

Our recent studies using cultured THP-1 macrophages
have shown that hexarelin caused a significant decrease in
total lipid accumulation via CD36, resulting in an augmen-
tation of cholesterol efflux from cells (11, 12). Because adi-
pocytes are known to express CD36 and not the other known
hexarelin receptor-1a (Refs. 15 and 16 and data not shown),
we evaluated the effect of hexarelin on lipid content in cul-
tured 3T3-L1 adipocytes. 3T3-L1 cells were differentiated to
mature adipocytes for 8 d with insulin/dexamethasone/3-
isobutyl-1-methylxanthine, and treated with 10�7 and 10�5 m
hexarelin for 48 h with a media change at 24 h. After treat-
ment with hexarelin, a marked decrease in total cellular lipid
and in the size of the lipid droplets was observed, compared
with untreated cells (Fig. 1A). Whereas differentiation of
3T3-L1 preadipocytes into adipocytes resulted in a strong
accumulation of lipids in vesicles, mature adipocytes treated
with hexarelin showed a significant decrease in total lipid
amount, compared with untreated cells (Fig. 1B). Such de-
crease was comparable with cells treated with troglitazone,
a specific PPAR� ligand known to deplete lipid content in
adipocytes (17). The decrease in lipid staining is associated
with a significant reduction in intracellular triglyceride levels
in adipocytes treated with hexarelin (Fig. 1C).

Microarray analysis of genes regulated by hexarelin in 3T3-
L1 adipocytes

To address the overall effect of hexarelin on genes in-
volved in lipid metabolism in adipocytes, we performed
microarray analysis on differentiated 3T3-L1 adipocytes
treated with hexarelin and compared the expression profile
with cells treated with troglitazone, relative to untreated
cells. Total RNA was harvested from each sample treatment
and probed against Affymetrix mouse 430.2 oligonucleotide
chip. Probe sets that were identified as absent calls across all
samples and experiments were removed from analysis. The
relative gene expression levels in each treated sample were
compared with untreated controls to determine significant
changes. Selected genes were listed according to their known
function (Fig. 2A).

Of the entire probe sets analyzed, 1119 were up-regulated
in cells treated with hexarelin, suggesting that interaction
with CD36 induces profound changes in the expression pro-
file of adipocytes. Interestingly, many of these genes were

shared with troglitazone treatment, indicating that PPAR�
may be considered as a common regulator in both responses.
Consistent with this, among the genes up-regulated by
hexarelin, we found many established PPAR� targets, such
as nuclear receptor LXR�, fatty acid transport protein
(FATP)-1, and ATP synthase (Fig. 2A). However, the re-
sponse to hexarelin was not totally mimicked by troglitazone
as other described PPAR� targets, such as adipocyte fatty
acid binding protein-4 (also referred to as aP2), and lipid
droplet-associated protein adipophilin remained mostly un-
changed upon treatment with hexarelin (Fig. 2, A–C). In
addition, troglitazone treatment led to a decrease in PPAR�
expression in adipocytes (0.6-fold in protein levels, com-
pared with untreated cells), a finding also observed by others
(18), whereas hexarelin did not significantly modify PPAR�
expression (Fig. 2). We also reported a similar response in
PPAR� expression in macrophages, indicating that this reg-
ulation is not cell specific (12).

Given the decrease in triglyceride content in cells treated
with hexarelin (Fig. 1), we looked at several genes involved
in various aspects of fatty acid metabolism including those
involved in entry, transport, synthesis, and mobilization. Of
those, hormone-sensitive lipase, GDSL motif-containing
lipase, fatty acid synthase, acetyl-CoA synthase, and FATP1
were all up-regulated by hexarelin (Fig. 2A). In contrast,
glycerol-3-phosphate acyltransferase (GPAT), which cata-
lyzes the initial and committing step in glycerolipid biosyn-
thesis, was down-regulated by hexarelin. This type of profile

FIG. 1. Hexarelin reduced lipid content in mouse 3T3-L1 adipocytes.
A, Representative images of differentiated 3T3-L1 adipocytes un-
treated (Diff) or treated with 10�5 M hexarelin for 48 h. Lipids were
stained with oil red O and examined by microscopy. B, Photometric
measurement of lipids stained with oil red O from undifferentiated
(�) or differentiated 3T3-L1 cells treated with hexarelin or troglita-
zone (Tro) or left untreated (Diff). Data are presented as mean � SEM
of at least six separate experiments. C, Intracellular triglyceride
content in 3T3-L1 adipocytes treated with hexarelin or troglitazone,
compared with untreated cells as in A. Data are presented as mean �
SEM of at least six separate experiments. *, P � 0.05 and **, P � 0.01
vs. untreated differentiated cells.
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FIG. 2. Hexarelin induced the expression of genes associated with fatty acid oxidation and brown adipocyte phenotype. A,
DNA microarray analysis of differentiated 3T3-L1 adipocytes treated with troglitazone, or hexarelin. Shown are selected
PPAR� target genes and genes associated with fatty acid metabolism. Results are presented as fold changes compared with
control cells set at 1.0. B, RT-PCR analysis of selected markers from differentiated 3T3-L1 cells treated with troglitazone
(Tro) or hexarelin (Hexa) or left untreated for 48 h before RNA isolation. Representative images are shown from at least
three separate experiments. 36B4 expression was used to normalize samples. C, Western analysis of 3T3-L1 adipocytes
treated as above. Samples were normalized for protein loading with �-actin. D, Hexarelin (Hexa) induces COX activity in
3T3-L1 adipocytes. Differentiated adipocytes were treated with hexarelin or troglitazone (Tro) or left untreated (Diff) for
72 h, and COX activity was measured on isolated mitochondria and normalized to protein content. Data are presented as
mean � SEM of at least six separate experiments. *, P � 0.005 vs. untreated differentiated cells.
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is strongly suggestive of an increase in the cellular mobili-
zation of free fatty acids in response to hexarelin.

Hexarelin up-regulates genes involved in fatty acid
oxidation and oxidative phosphorylation

What seemed more striking from the microarray experi-
ments was the expression changes of mitochondrial genes
involved in fatty acid metabolism. Several genes required for
fatty acid transport into mitochondria, such as mitochondrial
acyl carrier protein, acyl-CoA binding protein, and carni-
tine/acylcarnitine carrier protein were up-regulated by
hexarelin (Fig. 2A). Similarly, many genes involved in fatty
acid oxidation and oxidative phosphorylation were also up-
regulated by hexarelin, such as acetyl-CoA acyltransferase 1
and 2, hydroxyacyl-CoA dehydrogenase, and several sub-
units of the ATP synthase complex (Fig. 2, A and B). These
changes may reflect an increased activity of mitochondrial
processes toward oxidation of fatty acids and oxidative phos-
phorylation, two features closely related to mitochondrial
thermogenic activity and biogenesis.

One of the key enzymes involved in �-oxidation of long-
chain fatty acids for energy production is the carnitine palmi-
toyltransferase (CPT). The muscle isoform M-CPT I, also
known as CPT1b, is not normally expressed in mouse adi-
pose tissue (19). Interestingly, we observed by RT-PCR a
strong induction of the expression of CPT1b in 3T3-L1 adi-
pocytes treated with hexarelin and with troglitazone (Fig.
2B). Because mitochondrial proteins that process fatty acids
through entry and oxidation in mitochondria are often as-
sociated with energy production, we next analyzed the ex-
pression of genes involved in ATP production. Mitochon-
drial F1-ATPase is responsible for the synthesis of ATP
during oxidative phosphorylation to generate energy. Inter-
estingly, the expression of F1-ATP synthase was increased by
hexarelin to levels slightly lower then those obtained with
troglitazone when compared with untreated cells (Fig. 2, B
and C). Protein levels of F1-ATPase were increased by 3.1-
and 3.4-fold in response to, respectively, 10�7 and 10�5 m
hexarelin, whereas troglitazone induced a 4.4-fold increase,
compared with controls (Fig. 2C). These results correlate
with the microarray data showing many of the catalytic
subunits of F1-ATPase up-regulated in response to hexarelin.
These results therefore link the response of adipocytes to
hexarelin with the production of energy.

Hexarelin promotes the expression of thermogenic markers
in 3T3-L1 adipocytes

The increase we observed in the expression of genes in-
volved in �-oxidation of fatty acids and oxidative phosphor-
ylation in response to hexarelin suggests that these cells may
generate more ATP. Several studies have shown that such
metabolic needs for energy requires the PPAR� coactivator
PGC-1, which by inducing the expression of UCP1, a bio-
logical uncoupler of mitochondrial oxidative phosphoryla-
tion, initiates a broad program of thermogenesis in brown fat
and muscle tissues (20–24). Although both proteins are
poorly expressed, if not absent in white adipocytes, we found
a remarkable increase in the expression of PGC-1� and UCP1
in 3T3-L1 adipocytes treated with increasing doses of hexare-

lin (Fig. 2, B and C). Protein levels of PGC-1� and UCP1
reached, respectively, a 5.1- and 4.2-fold increase in response
to 10�5 m hexarelin. Similar increases were also observed in
cells treated with troglitazone, suggesting that the response
to troglitazone and hexarelin may converge at some point
with PPAR� activation. UCP2 was detected in 3T3-L1 adi-
pocytes but was not substantially modulated by hexarelin.

Mitochondrial cytochrome c oxidase activity is increased by
hexarelin in 3T3-L1 adipocytes

In view of the above results indicating a marked increase
in genes related to energy production, we measured the
activity of COX, which catalyzes the terminal and rate-lim-
iting step of the energy-transducing respiratory chain in mi-
tochondria leading to ATP production. We found that treat-
ment of 3T3-L1 adipocytes with hexarelin for 72 h
significantly induced COX activity in isolated mitochondria,
compared with untreated cells (Fig. 2D). Similarly, COX ac-
tivity was also augmented in response to troglitazone using
the same conditions. These changes in COX activity are con-
sistent with the increases in expression levels of subunits
forming COX enzymatic complex and other components of
the respiratory chain in cells treated with hexarelin (Fig. 2A)
and therefore support the ability of hexarelin to induce mi-
tochondrial activity in adipocytes.

Hexarelin induces ultrastructural changes indicative of
increased mitochondrial activity and biogenesis

Expression of PGC-1� is known to stimulate mitochon-
drial energy-producing capacity and biogenesis in tissues
with high oxidative potential, such as heart, muscle, and
brown fat (24, 25). First, we determined whether the changes
in mitochondrial gene expression correlated with changes in
mitochondrial morphology by staining differentiated 3T3-L1
adipocytes with rhodamine-123, a nontoxic mitochondrial
fluorescent dye. Mitochondria of untreated cells were seen as
a dense interconnected reticular motif (Fig. 3A), a pattern
also reported by others (26). However, when treated with
hexarelin for 72 h, the mitochondrial appearance was re-
modeled into individual densely packed structures, highly
similar to the mitochondrial shape observed in cells treated
with troglitazone (Fig. 3A).

The ultrastructure of the mitochondria was further defined
using electron microscopy. Mitochondria of 3T3-L1 adipo-
cytes treated with hexarelin were characterized by an in-
crease in size and intense formation of lamellar cristae, com-
pared with untreated cells (Fig. 3B). In addition, the cristae
membrane of mitochondria from cells treated with hexarelin
was highly organized and linearly displayed across the entire
width of the organelle, compared with controls. The average
mitochondrial size and percentage of mitochondrial matrix
occupied by cristae were calculated and showed that mito-
chondrial size was increased by more than 2-fold (P � 0.001),
and the percentage of surface within the mitochondrial ma-
trix occupied by cristae membrane increased from 32% to
almost 45% (P � 0.001) in adipocytes treated with hexarelin,
compared with control cells (Fig. 3, C and D). This particular
phenotype depicts a condition to maximize the intramito-
chondrial spanning of cristae, a pattern highly characteristic
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of mitochondria from tissues with high energy production
rate, such as brown adipose tissue, heart, and skeletal muscle
(27).

Consistent with enhanced de novo mitochondrial synthesis,
we found that hexarelin increased the expression of several
translocases of the outer and inner membrane (TIM) of mi-
tochondria (Fig. 3E). The translocases of the outer membrane
and TIMs are responsible for the import of mitochondrial
proteins encoded by the nuclear genome into the matrix and
the intermembrane space of mitochondria (28). Among these
family translocases, TIM17b reached a 3.8-fold increase in
response to hexarelin, compared with control cells. Interest-
ingly, TIM17b is ubiquitously expressed in humans and mice
with a higher expression pattern in tissues with high oxida-
tive potential, such as heart and skeletal muscle (29). Also
up-regulated by hexarelin were several of the mitochondrial
ribosomal proteins or MRPs involved in the translation of
many proteins of the respiratory chain (30), indicating that
mitochondrial transcription and translation was increased in
response to hexarelin (Fig. 3E). In addition, both subunits of
prohibitin, which form a large complex in the mitochondrial
inner membrane to stabilize newly synthesized subunits of
the respiratory chain (31), were up-regulated by hexarelin
(Fig. 3E). It was reported that impaired function of these

subunits resulted in a decreased number and mass of mito-
chondria and was associated with deficient mitochondrial
biogenesis (32).

Induction of thermogenic markers and mitochondrial
biogenesis by hexarelin occurs in vivo and is dependent
on CD36

To address whether the phenotypic changes we observed
in cultured adipocytes in response to hexarelin could also
occur in vivo, we treated C57BL/6 mice with saline (control)
or 100 �g/kg�d hexarelin for 12 wk. The concentration of
hexarelin used in this study was reported not to elicit GH
release and therefore prevented any undesired effects of GH
(11, 12, 14). No adverse health problems were noticed
throughout the treatment. The epididymal white fat was
collected from treated mice and saline controls and analyzed
by electron microscopy. Electronic images of fat tissues of
hexarelin-treated mice showed an intense cristae formation
in mitochondria, compared with controls, and more notice-
ably, the size in mitochondria was increased by 55% in these
conditions (Fig. 4, A and B). In addition, we performed West-
ern blot analysis on epididymal tissue that showed that pro-
tein levels of F1-ATPase and thermogenic markers PGC-1�

FIG. 3. Hexarelin induces morphologi-
cal changes in mitochondrial ultra-
structure. A, Representative images of
3T3-L1 adipocytes stained with mito-
chondria-specific rhodamine-123 dye.
Cells were untreated (Diff) or treated
with 10�5 M hexarelin (Hexa) or 8 �M
troglitazone (Tro) for 72 h before stain-
ing and microscopic analysis. Magnifi-
cation, �100. B, 3T3-L1 cells were
treated with 10�5 M hexarelin for 72 h
or left untreated and visualized by elec-
tron microscopy. Representative im-
ages show an increase in mitochondrial
size and cristae formation in response
to hexarelin. C, Quantification of the
average mitochondrial size in hexare-
lin-treated 3T3-L1 adipocytes, com-
pared with untreated cells. Sizes are
depicted as the mean of calculated sur-
face area � SEM of more than 70 mito-
chondria per group. *, P � 0.001. D,
Relative surface area occupied by the
cristae membrane within mitochondria
expressed as % of total surface area.
Data are presented as mean � SEM of
more than 25 mitochondria per group. *,
P � 0.001. E, DNA microarray analysis
of selected genes involved in mitochon-
drial biogenesis and found to be up-reg-
ulated by hexarelin, compared with un-
treated 3T3-L1 cells. Results with
troglitazone are also shown. Fold
changes are presented as in Fig. 2A.
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and UCP1 were increased in response to hexarelin (Fig. 4C).
In contrast, there was no apparent changes in steady-state
levels of these proteins in epididymal fat tissue derived from
CD36-null mice treated as above with hexarelin, compared
with saline-treated CD36-null mice (Fig. 4C). Invalidation of
CD36 also induced an increase in F1-ATPase levels in epi-
didymal fat, whereas those of PGC-1� and UCP1 remained
mostly unchanged. These results therefore suggest that the
ability of hexarelin to promote mitochondrial metabolic
changes in cultured adipocytes can be transposed in vivo and
are dependent on CD36.

Discussion

One of the critical regulators of fatty acid metabolism in fat
is PPAR�, which controls the expression of a broad range of
genes involved in fatty acid and glucose uptake, �-oxidation,
and lipid storage (33). Based on our previous reports that
ligands of the GHRP family interact with scavenger receptor
CD36 to promote PPAR� activation and downstream effects
on cholesterol metabolism in macrophages (11, 12), we hy-
pothesized that GHRP hexarelin might have an impact on
adipocytes that express CD36. In this article, we described
profound changes in the gene expression profile and mito-
chondria morphology in white fat cells treated with hexarelin
correlating with a fat burning-like phenotype characteristic
of brown adipocytes.

Interestingly, many of the genes up-regulated by hexarelin

were shared with troglitazone treatment, indicating that
PPAR� activation is likely to be involved in the response of
adipocytes to hexarelin. Among the PPAR� target genes
up-regulated by hexarelin, we found nuclear receptor LXR�,
FATP1, FATP4, CPT1b, and F1-ATP synthase. Otherwise, not
all established PPAR� genes were regulated in the same
manner as with troglitazone. Genes such as aP2 and adi-
pophilin remained unaffected in hexarelin-treated cells, sug-
gesting that the response to hexarelin is likely to be more
complex than the sole activation of the PPAR� pathway.
Consistent with this, CD36 gene expression was modestly
increased by hexarelin with no change in protein levels,
whereas troglitazone significantly induced both in treated
adipocytes. Similar results were found in macrophages in
which CD36 expression remains mostly unaffected by GH-
RPs, whereas troglitazone significantly up-regulated CD36
(11, 12). Such regulation was associated with a differential
CD36 promoter occupancy by PPAR� as determined by chro-
matin immunoprecipitation assay (12). Additionally, PPAR�
expression seems to be regulated differently in response to
GHRPs than PPAR� ligands. We found that treating adipo-
cytes with troglitazone lead to a decrease in PPAR� expres-
sion, a finding that was not associated with a decrease in
target gene expression in mature adipocytes (18, 34) and that
is generally observed for many nuclear receptors in response
to ligands. However, the PPAR� mRNA level was slightly
increased in response to hexarelin, whereas no obvious
change was noticed for its protein level. A similar observa-
tion was also obtained in macrophages, suggesting that GH-
RPs contribute to maintain steady-state levels of PPAR� (11,
12). The mechanism by which hexarelin stimulates PPAR�
activity but not down-regulating its expression deserves fur-
ther investigation.

The white adipose tissue is the major site for triglyceride
storage in the body and plays a critical role in maintaining
homeostatic levels of circulating fatty acids and energy bal-
ance by promoting triglyceride breakdown and fatty acid
release. Our results indicate that adipocytes respond to
hexarelin with an increased mobilization of fatty acids rather
than triglyceride synthesis. The depletion in lipid content in
cells treated with hexarelin correlates with an increase in
expression level of hormone-sensitive lipase, the enzyme
involved in lipolysis. Genes involved in fatty acid synthesis
and import were also augmented, such as fatty acid synthase
and transporters FATP1 and FATP4. Interestingly, the ex-
pression of mitochondrial GPAT was decreased in adipo-
cytes treated with hexarelin. It was recently shown that mi-
tochondrial GPAT1, which catalyzes the initial and rate-
controlling step in glycerolipid synthesis, partitions acyl-
CoAs toward triacylglycerol synthesis and its deficiency in
mice resulted in a redirection of fatty acids into the oxidation
pathway in liver (35).

Such apparent mobilization of fatty acids induced by
hexarelin seems to be unexpectedly directed toward the
�-oxidation pathway in treated mature white adipocytes.
Adipose tissue functions normally to release fatty acids in the
circulation to be used by peripheral tissues of high oxidative
potential, such as heart and muscle to produce ATP in re-
sponse to energy expenditure. Brown adipocytes also use
fatty acid oxidation to burn fat necessary for adaptive ther-

FIG. 4. Hexarelin induced expression of thermogenic markers and
mitochondrial biogenesis in vivo. A, C57BL/6 mice were treated with
hexarelin or saline (control) for 12 wk, and epididymal adipose tissue
was analyzed by electron microscopy. Representative images from
both samples are shown. B, Quantification of the average mitochon-
drial size in adipose tissue from mice treated as in A. Sizes are
depicted as the mean of calculated surface area � SEM of more than
50 mitochondria per group. *, P � 0.001. C, Western analysis of
epididymal fat isolated from C57BL/6 wild-type and CD36-null mice
treated with hexarelin (Hexa) or saline for 12 wk. Shown are samples
obtained for each treatment from two separate experiments.
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mogenesis. We found that cultured 3T3-L1 adipocytes
treated with hexarelin exhibit an increased expression profile
of mitochondrial genes related to long-chain fatty acid oxi-
dation. The expression of CPT1b, a key enzyme for fatty acid
oxidation in the heart, skeletal muscle and brown adipose
tissue in human and rat, but normally absent in mouse white
adipocytes or in 3T3-L1 cells (19), was strongly induced by
hexarelin. Induction in CPT1b was described to be respon-
sible for the dramatic increase in fatty acid oxidation that
occurs in the heart after birth in which energy production
switches from glucose to fatty acid use (36). Compared with
its related isoform CPT1a, mainly expressed in liver, kidney,
and intestine, CPT1b is more sensitive to the inhibition by
malonyl-CoA (37). The expression of malonyl-CoA decar-
boxylase, which catalyzes the conversion of malonyl-CoA to
acetyl-CoA, was up-regulated by hexarelin. Such an increase
would potentially result in CPT1 activation by relieving the
inhibitory effect of malonyl-CoA, and therefore increasing
fatty acid oxidation.

Studies using genetic approaches and PPAR ligands have
described the gene for CPT1 as regulated by PPAR isoforms,
including PPAR� and PPAR� (38–40). Although the precise
role of PPAR� on adipocyte functions remains to be deter-
mined, PPAR� plays a pivotal role in fatty acid metabolism
by regulating the expression of genes involved in mitochon-
drial and peroxisomal �-oxidation pathways (41, 42). This
raises the possibility that, in response to hexarelin, the in-
crease of the expression of genes related to fatty acid oxi-
dation in adipocytes might also depend on PPAR� activa-
tion. Consistent with this, we found that hexarelin
contributed to activate all three PPAR subtypes using a cell
reporter assay, suggesting that cellular signaling induced by
CD36 might influence PPAR activity (12). However, because
the PPARs can all be activated to various degrees by low
micromolar concentrations of unsaturated fatty acids (43),
we cannot exclude the possibility that the mobilization of free
fatty acids in cells due to hexarelin could provide endoge-
nous ligands to selectively activate the PPARs and therefore
fatty acid oxidation. Nevertheless, using genetically ablated
PPAR�� macrophages, we showed that the activation of
PPAR� target genes such as LXR� in response to hexarelin
was impaired, suggesting that PPAR� activation is a major
determinant of the response to GHRPs (12). Further studies
are required to determine the exact contribution of hexarelin
to PPAR activation in adipocytes.

Genes involved in oxidative phosphorylation and ATP
synthesis were also strongly up-regulated by hexarelin, sup-
porting the redirection of fatty acids toward mitochondrial
oxidation rather than their release or their conversion into
triacylglycerol. This profile was supported by a significant
increase in F1-ATP synthase expression and mitochondrial
COX activity and a noticeable change in mitochondrial mor-
phology in either treated adipocytes or mouse white adipose
tissue. Electronic microscopy showed a significant increase
in the intramitochondrial matrix surface and an intense cris-
tae formation that spans the entire width of the organelle in
response to hexarelin. Microarray analysis indicated an in-
crease in the expression of many catalytic subunits of the
ATPase and COX multimeric complexes, which both reside
within the cristae membrane. Such phenotypic organization

of mitochondria is typical of tissues with high oxidative
potential, including muscle and brown fat, to support an
enhanced activity in ATP production by the ATP synthase
complex and mitochondrial respiration process (27). Most
strikingly were the enhanced mRNA and protein levels of
PGC-1� and UCP1 in response to hexarelin, which rose from
low detectable levels normally found in white adipocytes to
those mainly characteristic of brown fat. Under the same
conditions, UCP2, a more ubiquitously expressed protein
than UCP1 but for which its role is normally less related to
the thermogenic response (44–46), appeared not to be reg-
ulated by hexarelin, indicating that the effects of hexarelin in
promoting mitochondrial metabolic activity are more de-
pendent on UCP1 up-regulation.

PGC1� is highly expressed in brown fat and plays a critical
role in initiating a broad program of thermogenesis that
includes enhanced oxidative metabolism and mitochondrial
biogenesis (22). Interestingly, the transgenic expression of
PGC-1� in white fat cells was shown to induce UCP1 ex-
pression and mitochondrial biogenesis, indicative that un-
coupling of mitochondrial respiration is an important com-
ponent of energy expenditure in vivo (47). Such metabolic
need for energy supported by PGC-1� and UCP1 expression
and mitochondrial morphological changes also occurred in
white fat of treated mice, indicating that the ability of hexare-
lin to promote a fat burning-like phenotype was maintained
in vivo. PGC-1� also controls critical aspects of energy me-
tabolism in other tissues such as heart and muscle and largely
contributes to the expression of genes of gluconeogenesis in
liver (21, 23, 48, 49). Thus, modulating the relative activity of
PGC-1 within a particular tissue may lead to fine-tuning of
mitochondrial function in fatty acid oxidation and energy
balance. Whether hexarelin may promote similar effects in
other tissues expressing PGC-1� remains to be determined.
In addition, with the propensity of PGC-1� to coactivate
other nuclear receptors besides PPAR�, such as thyroid hor-
mone receptor-�, retinoic acid receptor-�, estrogen-related
receptor, and PPAR�, and to result in enhanced UCP1 ex-
pression (47), it is expected that these pathways may also be
affected by hexarelin.

Although the exact mechanisms by which GHRPs exert
their effects through CD36 are not fully understood, it be-
comes clear that interacting with CD36 induces profound
changes in metabolic activities of target tissues, especially
regarding PPAR�-regulated events. In macrophages, GHRPs
induced the PPAR�-LXR�-ABC pathway, leading to choles-
terol efflux and reduction of atherosclerosis (11, 12). Here we
report that hexarelin promotes the expression of key regu-
latory genes in fat metabolism, many of which are controlled
by PPAR�, resulting in the mobilization of fatty acids toward
mitochondria oxidative phosphorylation and biogenesis
in white fat cells. These results therefore implicate CD36
in the regulation of the overall metabolic activity of mi-
tochondria in adipocytes. With the emerging evidence that
mitochondria dysfunction is associated with metabolic de-
fects such as insulin resistance and type 2 diabetes (50), one
can expect that modulating CD36 function might be po-
tentially beneficial.
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