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Cyclic phosphatidic acid (cPA) is found in cells from slime mold to humans and has a largely unknown
function. We previously reported that cPA significantly inhibited the lipid accumulation in 3T3-L1 adipo-
cytes through inhibition of PPARc activation. We find here that cPA reduced intracellular triglyceride lev-
els and inhibited the phosphodiesterase 3B (PDE3B) expression in 3T3-L1 adipocytes. PPARc activation in
adipogenesis that can be blocked by treatment with cPA then participates in adipocyte function through
inhibition of PDE3B expression. We also found the intracellular cAMP levels in 3T3-L1 adipocytes
increased after exposure to cPA. These findings contribute to the participation of cPA on the lipolytic
activity in 3T3-L1 adipocytes. Our studies imply that cPA might be a therapeutic compound in the treat-
ment of obesity and obesity-related diseases.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Overweight and obesity are worldwide health problems. There
are more than 1 billion overweight adults in the world, and there
are at least 300 million clinically obese people [1]. Obesity is a con-
dition in which adipocytes accumulate a large amount of body fat
and become enlarged. Adipocytes play a critical role in lipid
homeostasis and energy balance. Adipose differentiation is a com-
plex process by which fibroblast-like undifferentiated cells are
converted into cells that accumulate lipid droplets [2]. It has been
reported that PPARc plays a critical role in adipogenesis [2,3].
PPARc is a nuclear hormone receptor that plays an essential role
in lipid and glucose homeostasis and predominantly expressed in
the adipose tissue [2]. Upon agonist binding, PPARc drives the
expression of several adipocyte-specific genes [3] such as FABP4
(fatty acid binding protein 4) and CD36 (scavenger receptor).
PPARc agonists are known to induce the differentiation of preadi-
pocytes into mature adipocyte. Physiological agonists include 15d-
PGJ2 [4], lysophospholipids, such as lysophosphatidic acid (LPA) [5]
and alkyl glycerophosphate (AGP) [6], oxidized phospholipids [7]
and nitrated fatty acids [8]. The thiazolidinediones agonists,
including rosiglitazone and pioglitazone are widely used in type
ll rights reserved.
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II diabetes mellitus to improve insulin sensitivity by inducing the
expression of genes involved in adipocyte differentiation, lipid
and glucose uptake, and fatty acid storage [9–11]. Furthermore,
PPARc activation is also known to be necessary and sufficient for
neointimal lesion formation [12]. Neointima formation is an early
step in the development of atherosclerotic plaques [13,14]. Athero-
genic lesions progress through a prolonged process of lipid accu-
mulation and can trigger ischemic attack or stroke [15]. Recent
studies indicate that PPARc antagonists are able to inhibit adipo-
cyte differentiation. The bisphenol A diglycidyl ether (BADGE)
has been shown to possess both agonist and antagonist activities
toward PPARc, and to block the ability of adipogenic cell lines such
as 3T3-L1 and 3T3-F442A cells [16]. T0070907 was identified as a
potent and selective PPARc antagonist and it also inhibited lipid
accumulation in 3T3-L1 cells [17]. We have been reported that
cPA is a specific and high-affinity antagonist of PPARc [18–20].
cPA is a naturally occurring analog of LPA in which the sn-2 hydro-
xy group forms a 5-membered ring with the sn-3 phosphate
[21–23]. cPA is generated by transphosphatidylation of lysophos-
phatidyl choline (LPC) catalyzed by phospholipase D [24].

In 3T3-L1 adipocytes, investigations on PDE have focused on
hormone-sensitive PDE3B activity and its expression [25,26].
PDE3B is found in adipocytes and pancreatic b-cells [25,27], and
levels of PDE3B mRNA and protein are lower in white adipose tis-
sue of rodents model [28]. Furthermore, decreases in PDE3B activ-
ity is accompanied by increases in intracellular cAMP that in turn
lead to the activation of cAMP-dependent protein kinase A (PKA).
This then leads to the activation of hormone-sensitive lipase
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(HSL), subsequently to an increase in the stored TG hydrolysis rate,
and finally to increases in the release of FFA and glycerol from adi-
pocytes. In this article, we report show that the PPARc antagonist
cPA inhibits differentiation of adipocyte, downregulation of PDE3B
expression, increase of intracellular cAMP production, and stimu-
lated lipolysis activity in 3T3-L1 adipocytes.

2. Materials and methods

2.1. Reagents and antibodies

Cyclic phosphatidic acid (16:0) was purchased from Avanti Po-
lar Lipids (Alabaster, AL, USA). Carba cyclic phosphatidic acids,
3ccPA and 2ccPA, were chemically synthesized according to Uchiy-
ama et al. [29]. Purity of cPA or ccPA were confirmed by TLC and
negative ion liquid chromatography–mass spectrometry (data not
shown). Rosiglitazone was purchased from ALEXIS Biochemicals
(Lausen, Switzerland) and prepared as a 10 mM stock in ethanol.
T0070907 was purchased from Cayman chemical company (Ann
Arbor, Michigan, USA). GW9662, 3-isobutyl-1-methylxanthine
(IBMX), dexamethasone, cilostazol and insulin (from bovine pan-
creas) were purchased from Sigma Aldrich (St. Louis, MO, USA).
PDE inhibitors (for PDE1, PDE2 and PDE4), anti-PPARc antibody
(sc-7196), anti-PDE3B antibody (sc-20793) and anti-b-actin anti-
body (sc-47778) were purchased from Santa Cruz Biotechnology
(Santa Cruz, CA, USA).

2.2. Cell culture

Murine 3T3-L1 cells were purchased from American Type Cul-
ture Collection (VA, USA) and cultured in Dulbecco’s modified Ea-
gle’s medium supplemented with fetal calf serum and antibiotics.
Adipocyte differentiation of 3T3-L1 cells was induced by incuba-
tion of the cells for 2 days in differentiation medium supplement
with insulin (10 lg/ml), 1 lM dexamethasone, and 500 lM IBMX.
On day 2, the medium was replaced with growth medium contain-
ing insulin (10 lg/ml) alone and changed every 2 days. Adipocytes
were used for experiments 7–10 days after initiating
differentiation.

2.3. Cell viability assay

Trypan blue dye exclusion method is used to determine the
number of viable cells present in a cell suspension using
hemocytometer.

2.4. Oil-red O staining

The extent of differentiation was determined by the amount of
lipid accumulation at 10 days by Lipid Staining Kit (Zen-Bio, Inc.,
NC, USA). Briefly, cells were fixed in fixative solution for 1 h and
then stained with 0.6% oil-red O solution in isopropyl alcohol/
H2O (60:40, v/v) for 1 h at room temperature, washed four times
with distilled water, and dried. Differentiation was examined by vi-
sual inspection and quantified by elution with isopropyl alcohol
and an optical density measurement at 590 nm (Beckman DU-
640).

2.5. Reporter gene assay

To determine endogenous PPARc activation, 3T3-L1 cells were
co-transfected with pGL3b-PPRE (ACO)-Fluc and pSV40-b-galacto-
sidase plasmids and subjected to the reporter gene assay as de-
scribed before. Twenty-four hours after transfection, cells were
treated with indicated compounds and cultured for an additional
20 h. Luciferase activity was measured with the Steady-Glo lucifer-
ase Assay System (Promega, WI, USA) using the SpectraMax plate
reader (Molecular Devices, CA, USA).

2.6. Lipolysis assay

Lypolysis was measured as glycerol release an adipocyte sus-
pension by Lipolysis Assay Kit (Zen-Bio, Inc., Research Triangle
Park, NC, USA). 3T3-L1 cells are plated in 96 well plates and al-
lowed to differentiate under the standard differentiation condition
for 1 week. Confluent monolayers of adipocytes were washed with
PBS and exposed to PDE inhibitors (5 lM each) or cPA (0.1–30 lM)
or vehicle in phenol red-free DMEM with 2% fatty acid-free BSA for
up to 18 h at 37 �C in 5% CO2 incubator. Cells were then washed
with cold PBS and lysed in 1% Triton X-100 buffer, and the protein
concentration was determined and used to normalize glycerol re-
lease. Culture supernatants were collected and analyzed for glyc-
erol, a breakdown product of TG.

2.7. Quantitative real-time PCR analysis

Total RNA was prepared using TRIzol reagent (Invitrogen, CA,
USA) from 3T3-L1 (2 � 105 cell). One microgram of total RNA was
used for the subsequent synthesis of cDNA using the First-Strand
Synthesis kit (Promega, Madison, WI, USA) as recommended by
the manufacturer. Quantification of mRNA levels was measured
by using a real-time PCR system (Applied Biosystems, CA, USA)
and First Start Universal SYBR Green PCR Master (Roche Applied
Science, Germany) with the following primer pair sets: PDE3B,
50-CCAGGTGTGCATCAAATTAGCA-30 (F) and 50-CAATGCCTTCTGTCC
ATCTCAA-30(R); CD36, 50-GCCTCCTTTCCACCTTTTGT-30 (F) and 50-T
CTGTACACGGGGATTCCTT-30 (R); FABP4, 50-CTTCGATGATTACAT-
GAAAGAAGTG-30 (F) and 50-ACGCCCAGTTTGAAGGAAAT-30 (R);
GAPDH, 50-CTGCACCACCAACTGCTTAG (F) and 50-GGGCCATCCAC
AGTCTTCT-30 (R).

2.8. Western blot analysis

Cells were washed twice with ice-cold PBS and solubilized with
whole-cell extraction buffer (20 mM HEPES (pH 7.9), 0.5% NP-40,
15% glycerol, 300 mM NaCl, 1 mM EDTA, 10 mM NaF, 1 mM
Na3VO4, 1 mM DTT, 1 lg/ml leupeptin, 1 lg/ml pepstatin, 1 lg/
ml aprotinin and 0.5 mM PMSF). The cell lysate was centrifuged
at 14,000g for 5 min, and the protein in the supernatant was quan-
tified using Bradford protein assay reagent (Bio-Rad, CA, USA). To-
tal protein was diluted 1:4 with lane marker reducing sample
buffer (ThermoFisher Scientific, MA, USA) and boiled for 5 min.
The resultant protein was then separated on 10% SDS–PAGE and
transferred onto a PVDF membrane (GE Healthcare, NJ, USA). The
membrane was blocked by 5% skim milk in TBS (Tris-buffered sal-
ine) with 0.1% Tween 20 (pH 7.6) for 1 h at room temperature and
probed with primary rabbit anti-human PDE3B and actin antibody
(Santa Cruz Biotechnology, Santa Cruz, CA, USA) at 4 �C overnight.
After washing, the membrane was incubated with secondary anti-
rabbit antibody for 1 h at room temperature and then developed
with ECL-plus chemiluminescent detection reagent (GE Health-
care, Piscataway, NJ, USA).

2.9. Effect of cPA on intracellular cAMP level

The differentiated 3T3-L1 cells were incubated in medium con-
taining cPA for 6 h. cAMP levels in cell extracts were measured by
ELISA (cAMP Biotrak Enzyme immunoassay system, Amersham
Biosciences) in 96-well plates on a spectrophotometer at 450 nm
according to the manufacturer’s instructions.
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3. Results and discussion

3.1. cPA is an adipogenic antagonist through PPARc inhibition

As mentioned above, we have described that cPA (Fig. 1A) inhib-
ited the lipid accumulation in 3T3-L1 adipocytes. To confirm our pre-
vious observations, we designed and performed more detailed
studies. As shown in Fig. 1B, a viability assay was used to determine
any possible adverse effects of cPA. The viability of cultured 3T3-L1
cells was not affected by incubation in differentiation buffer with
various concentration of cPA (up to 10 lV). PPARc is a master regu-
lator in the formation of fat cell, and two PPARc isoforms (PPARc1
and PPARc2) have been found in adipocytes [2]. We examined the
B
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PPARc receptor in 3T3-L1 cells is functional, we transfected the cells
with a luciferase reporter plasmid. Following treatment of cell lines
with differentiation buffer, cPA and T0070907 inhibited the PPARc
activation elicited by rosiglitazone (Fig. 2A). These data suggest that
cPA inhibits the PPARc-dependent transcriptional responses in 3T3-
L1 adipocytes. PPARc agonists are known to promote the conversion
of a variety of preadipocyte into mature adipocyte [30]. Incubation of
3T3-L1 cells with 1 lV rosiglitazone for 7 days resulted in their effi-
cient conversion to adipocytes (Fig. 2B), as indicated by the increase
in Oil-red O staining (Fig. 2C) and the induction of adipocyte specific
gene, FABP4 and CD36 (Fig. 2D). In contrast, when the cells were co-
treated with 10 lV cPA, a significant conversion to the adipocyte
phenotype was not observed. Thus, cPA is proposed to be a potent
antagonist of adipocyte differentiation in 3T3-L1 cells.

3.2. Effect of cPA on PDE3B mRNA and protein expression in 3T3-L1
adipocytes

As it remains a matter of debate how cPA mediates its function
on the regulation of adipogenesis. We assess the ability of selective
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adipocytes with cPA or T0070907 results in decreased PDE3B gene
expression (Fig. 3A). PDE3B protein was then quantified by Wes-
tern blotting using anti-PDE3B antibody (Fig. 3B). In treated cells
with rosiglitazone, expression of PDE3B protein was increased to
1.9-fold compared to vehicle alone. This rise of PDE3B protein level
was also suppressed by treatment with cPA or T0070907. Based on
these data, we proposed that PDE3B might act through a PPARc
dependent regulation.

3.3. cPA stimulates intracellular cAMP production

Mukai et al. reported that cPA elevates intracellular cAMP con-
centration in MM1 cell line [33,34]. However, the mechanism by
which PDE3B initiates activation of intracellular cAMP production
by cPA is still unclear. To address this question, we examined the
effects of cPA on the intracellular cAMP concentration in 3T3-L1
adipocytes. As shown in Fig. 3C, treatment of adipocytes with
cPA significantly increased the amount of free glycerol. This is sug-
gests that TG was hydrolyzed in adipocytes to FFA and glycerol
through the lypolysis. We next examined the level of intracellular
cAMP in 3T3-L1 adipocytes, and the cAMP level in 3T3-L1 adipo-
cytes by cPA or ccPA (1 and 10 lV) was observed (Fig. 3D). From
these results, cPA is shown to influence the degradation of TG
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converting into free glycerol by inhibiting PDE3B expression, and
subsequent increase of intracellular cAMP level is caused (Fig. 4).
These results suggest that cPA effects are associated with a de-
crease in the PPARc activation as well as a diminished expression
of PDE3B. cAMP-regulated lipolytic reaction in adipocytes is the
critical gateway for stored energy release in cells [31]. Our data
show that, cPA stimulates lipolysis might, at least in part, be
caused by cPA. Further experiments are required in order to dissect
the cross talk between these molecules. However, these studies
support the potential use of cPA and its derivative as a therapeutic
compound for obesity and obesity-related diseases.
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